
TAR (5) FreeBSDFile Formats Manual TAR (5)

NAME
tar — format of tape archive files

DESCRIPTION
The tar archive format collects any number of files, directories, and other file system objects (symbolic
links, device nodes, etc.) into a single stream of bytes.The format was originally designed to be used with
tape drives that operate with fixed-size blocks, but is widely used as a general packaging mechanism.

General Format
A tar archive consists of a series of 512-byte records. Each file system object requires a header record
which stores basic metadata (pathname, owner, permissions, etc.) and zero or more records containing any
file data. The end of the archive is indicated by two records consisting entirely of zero bytes.

For compatibility with tape drives that use fixed block sizes, programs that read or write tar files always read
or write a fixed number of records with each I/O operation. These “blocks” are always a multiple of the
record size. The maximum block size supported by early implementations was 10240 bytes or 20 records.
This is still the default for most implementations although block sizes of 1MiB (2048 records) or larger are
commonly used with modern high-speed tape drives. (Note:the terms “block” and “record” here are not
entirely standard; this document follows the convention established by John Gilmore in documenting
pdtar .)

Old-Style Archive Format
The original tar archive format has been extended many times to include additional information that various
implementors found necessary. This section describes the variant implemented by the tar command included
in Version 7AT&T UNIX , which seems to be the earliest widely-used version of the tar program.

The header record for an old-styletar archive consists of the following:

struct header_old_tar {
char name[100];
char mode[8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char checksum[8];
char linkflag[1];
char linkname[100];
char pad[255];

};
All unused bytes in the header record are filled with nulls.

name Pathname, stored as a null-terminated string.Early tar implementations only stored regular files
(including hardlinks to those files).One common early convention used a trailing "/" character to
indicate a directory name, allowing directory permissions and owner information to be archived
and restored.

mode File mode, stored as an octal number in ASCII.

uid, gid User id and group id of owner, as octal numbers in ASCII.

size Size of file, as octal number in ASCII.For regular files only, this indicates the amount of data that
follows the header. In particular, this field was ignored by early tar implementations when extract-
ing hardlinks. Modern writers should always store a zero length for hardlink entries.

FreeBSD 11.0 December 23, 2011 1



TAR (5) FreeBSDFile Formats Manual TAR (5)

mtime Modification time of file, as an octal number in ASCII.This indicates the number of seconds since
the start of the epoch, 00:00:00 UTC January 1, 1970.Note that negative values should be avoided
here, as they are handled inconsistently.

checksum
Header checksum, stored as an octal number in ASCII.To compute the checksum, set the check-
sum field to all spaces, then sum all bytes in the header using unsigned arithmetic.This field
should be stored as six octal digits followed by a null and a space character. Note that many early
implementations of tar used signed arithmetic for the checksum field, which can cause interoper-
ability problems when transferring archives between systems. Modern robust readers compute the
checksum both ways and accept the header if either computation matches.

linkflag, linkname
In order to preserve hardlinks and conserve tape, a file with multiple links is only written to the ar-
chive the first time it is encountered. The next time it is encountered, thelinkflag is set to an
ASCII ‘1’ and thelinknamefield holds the first name under which this file appears. (Note that reg-
ular files have a null value in thelinkflagfield.)

Early tar implementations varied in how they terminated these fields. The tar command in Version 7AT&T
UNIX used the following conventions (this is also documented in early BSD manpages): the pathname must
be null-terminated; the mode, uid, and gid fields must end in a space and a null byte; the size and mtime
fields must end in a space; the checksum is terminated by a null and a space.Early implementations filled
the numeric fields with leading spaces. This seems to have been common practice until theIEEE Std
1003.1-1988 (“POSIX.1”) standard was released.For best portability, modern implementations should fill the
numeric fields with leading zeros.

Pre-POSIX Archives
An early draft ofIEEE Std 1003.1-1988 (“POSIX.1”) served as the basis for John Gilmore’s pdtar program
and many system implementations from the late 1980s and early 1990s. These archives generally follow the
POSIX ustar format described below with the following variations:
• The magic value consists of the five characters “ustar” followed by a space.The version field con-

tains a space character followed by a null.
• The numeric fields are generally filled with leading spaces (not leading zeros as recommended in

the final standard).
• The prefix field is often not used, limiting pathnames to the 100 characters of old-style archives.

POSIX ustar Archives
IEEE Std 1003.1-1988 (“POSIX.1”) defined a standard tar file format to be read and written by compliant
implementations oftar(1). Thisformat is often called the “ustar” format, after the magic value used in the
header. (The name is an acronym for “Unix Standard TAR”.) It extends the historic format with new fields:

struct header_posix_ustar {
char name[100];
char mode[8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char checksum[8];
char typeflag[1];
char linkname[100];
char magic[6];
char version[2];
char uname[32];

FreeBSD 11.0 December 23, 2011 2



TAR (5) FreeBSDFile Formats Manual TAR (5)

char gname[32];
char devmajor[8];
char devminor[8];
char prefix[155];
char pad[12];

};

typeflag Type of entry. POSIX extended the earlierlinkflagfield with several new type values:
“0” Regular file. NUL should be treated as a synonym, for compatibility purposes.
“1” Hard link.
“2” Symbolic link.
“3” Character device node.
“4” Block device node.
“5” Directory.
“6” FIFO node.
“7” Reserved.
Other A POSIX-compliant implementation must treat any unrecognized typeflag value as a

regular file. In particular, writers should ensure that all entries have a valid filename so
that they can be restored by readers that do not support the corresponding extension.
Uppercase letters "A" through "Z" are reserved for custom extensions. Notethat sockets
and whiteout entries are not archivable.

It is worth noting that thesizefield, in particular, has different meanings depending on the type.
For regular files, of course, it indicates the amount of data following the header. For directories, it
may be used to indicate the total size of all files in the directory, for use by operating systems that
pre-allocate directory space.For all other types, it should be set to zero by writers and ignored by
readers.

magic Contains the magic value “ustar” followed by a NUL byte to indicate that this is a POSIX standard
archive. Full compliance requires the uname and gname fields be properly set.

version Version. Thisshould be “00” (two copies of the ASCII digit zero) for POSIX standard archives.

uname, gname
User and group names, as null-terminated ASCII strings.These should be used in preference to
the uid/gid values when they are set and the corresponding names exist on the system.

devmajor, devminor
Major and minor numbers for character device or block device entry.

name, prefix
If the pathname is too long to fit in the 100 bytes provided by the standard format, it can be split at
any/ character with the first portion going into the prefix field.If the prefix field is not empty, the
reader will prepend the prefix value and a/ character to the regular name field to obtain the full
pathname. Thestandard does not require a trailing/ character on directory names, though most
implementations still include this for compatibility reasons.

Note that all unused bytes must be set toNUL.

Field termination is specified slightly differently by POSIX than by previous implementations.The magic,
uname, and gnamefields must have a trailing NUL. The pathname, linkname, and prefix fields must have a
trailing NUL unless they fill the entire field. (In particular, it is possible to store a 256-character pathname if
it happens to have a/ as the 156th character.) POSIXrequires numeric fields to be zero-padded in the front,
and requires them to be terminated with either space orNUL characters.

Currently, most tar implementations comply with the ustar format, occasionally extending it by adding new
fields to the blank area at the end of the header record.

FreeBSD 11.0 December 23, 2011 3



TAR (5) FreeBSDFile Formats Manual TAR (5)

Numeric Extensions
There have been several attempts to extend the range of sizes or times supported by modifying how numbers
are stored in the header.

One obvious extension to increase the size of files is to eliminate the terminating characters from the various
numeric fields.For example, the standard only allows the size field to contain 11 octal digits, reserving the
twelfth byte for a trailing NUL character. Allowing 12 octal digits allows file sizes up to 64 GB.

Another extension, utilized by GNU tar, star, and other newer tar implementations, permits binary numbers
in the standard numeric fields.This is flagged by setting the high bit of the first byte. The remainder of the
field is treated as a signed twos-complement value. Thispermits 95-bit values for the length and time fields
and 63-bit values for the uid, gid, and device numbers. In particular, this provides a consistent way to handle
negative time values. GNUtar supports this extension for the length, mtime, ctime, and atime fields.Joerg
Schilling’s star program and the libarchive library support this extension for all numeric fields. Note that this
extension is largely obsoleted by the extended attribute record provided by the pax interchange format.

Another early GNU extension allowed base-64 values rather than octal. This extension was short-lived and
is no longer supported by any implementation.

Pax Interchange Format
There are many attributes that cannot be portably stored in a POSIX ustar archive. IEEE Std 1003.1-2001
(“POSIX.1”) defined a “pax interchange format” that uses two new types of entries to hold text-formatted
metadata that applies to following entries. Note that a pax interchange format archive is a ustar archive in
ev ery respect.The new data is stored in ustar-compatible archive entries that use the “x” or “g” typeflag.In
particular, older implementations that do not fully support these extensions will extract the metadata into reg-
ular files, where the metadata can be examined as necessary.

An entry in a pax interchange format archive consists of one or two standard ustar entries, each with its own
header and data. The first optional entry stores the extended attributes for the following entry. This optional
first entry has an "x" typeflag and a size field that indicates the total size of the extended attributes. The
extended attributes themselves are stored as a series of text-format lines encoded in the portable UTF-8
encoding. Eachline consists of a decimal number, a space, a key string, an equals sign, a value string, and a
new line. Thedecimal number indicates the length of the entire line, including the initial length field and the
trailing newline. Anexample of such a field is:

25 ctime=1084839148.1212\n
Ke ys in all lowercase are standard keys. Vendors can add their own keys by prefixing them with an all
uppercase vendor name and a period. Note that, unlike the historic header, numeric values are stored using
decimal, not octal.A description of some common keys follows:

atime , ctime , mtime
File access, inode change, and modification times. These fields can be negative or include a deci-
mal point and a fractional value.

hdrcharset
The character set used by the pax extension values. Bydefault, all textual values in the pax
extended attributes are assumed to be in UTF-8, including pathnames, user names, and group
names. Insome cases, it is not possible to translate local conventions into UTF-8. If this key is
present and the value is the six-character ASCII string “BINARY”, then all textual values are
assumed to be in a platform-dependent multi-byte encoding.Note that there are only two valid
values for this key: “BINARY” or “ISO-IR 10646 2000 UTF-8”.No other values are permitted by
the standard, and the latter value should generally not be used as it is the default when this key is
not specified. In particular, this flag should not be used as a general mechanism to allow filenames
to be stored in arbitrary encodings.

FreeBSD 11.0 December 23, 2011 4



TAR (5) FreeBSDFile Formats Manual TAR (5)

uname, uid , gname, gid
User name, group name, and numeric UID and GID values. Theuser name and group name stored
here are encoded in UTF8 and can thus include non-ASCII characters.The UID and GID fields
can be of arbitrary length.

linkpath
The full path of the linked-to file. Note that this is encoded in UTF8 and can thus include non-
ASCII characters.

path The full pathname of the entry. Note that this is encoded in UTF8 and can thus include non-ASCII
characters.

realtime. ∗ , security. ∗
These keys are reserved and may be used for future standardization.

size The size of the file. Note that there is no length limit on this field, allowing conforming archives to
store files much larger than the historic 8GB limit.

SCHILY. ∗
Vendor-specific attributes used by Joerg Schilling’s star implementation.

SCHILY.acl.access , SCHILY.acl.default
Stores the access and default ACLs as textual strings in a format that is an extension of the format
specified by POSIX.1e draft 17. In particular, each user or group access specification can include a
fourth colon-separated field with the numeric UID or GID. This allows ACLs to be restored on
systems that may not have complete user or group information available (such as when NIS/YP or
LDAP services are temporarily unavailable).

SCHILY.devminor , SCHILY.devmajor
The full minor and major numbers for device nodes.

SCHILY.fflags
The file flags.

SCHILY.realsize
The full size of the file on disk. XXX explain? XXX

SCHILY.dev, SCHILY.ino , SCHILY.nlinks
The device number, inode number, and link count for the entry. In particular, note that a pax inter-
change format archive using Joerg Schilling’s SCHILY. ∗ extensions can store all of the data from
struct stat.

LIBARCHIVE. ∗
Vendor-specific attributes used by thelibarchive library and programs that use it.

LIBARCHIVE.creationtime
The time when the file was created.(This should not be confused with the POSIX “ctime”
attribute, which refers to the time when the file metadata was last changed.)

LIBARCHIVE.xattr. namespace.key
Libarchive stores POSIX.1e-style extended attributes using keys of this form. The key value is
URL-encoded: All non-ASCII characters and the two special characters “=” and “%” are encoded
as “%” followed by two uppercase hexadecimal digits. The value of this key is the extended
attribute value encoded in base 64. XXX Detail the base-64 format here XXX

VENDOR.∗
XXX document other vendor-specific extensions XXX

FreeBSD 11.0 December 23, 2011 5



TAR (5) FreeBSDFile Formats Manual TAR (5)

Any values stored in an extended attribute override the corresponding values in the regular tar header. Note
that compliant readers should ignore the regular fields when they are overridden. Thisis important, as exist-
ing archivers are known to store non-compliant values in the standard header fields in this situation.There
are no limits on length for any of these fields.In particular, numeric fields can be arbitrarily large. All text
fields are encoded in UTF8. Compliant writers should store only portable 7-bit ASCII characters in the stan-
dard ustar header and use extended attributes whenever a text value contains non-ASCII characters.

In addition to thex entry described above, the pax interchange format also supports ag entry. Theg entry is
identical in format, but specifies attributes that serve as defaults for all subsequent archive entries. Theg
entry is not widely used.

Besides the new x andg entries, the pax interchange format has a few other minor variations from the earlier
ustar format. The most troubling one is that hardlinks are permitted to have data following them.This
allows readers to restore any hardlink to a file without having to rewind the archive to find an earlier entry.
However, it creates complications for robust readers, as it is no longer clear whether or not they should
ignore the size field for hardlink entries.

GNU Tar Ar chives
The GNU tar program started with a pre-POSIX format similar to that described earlier and has extended it
using several different mechanisms: It added new fields to the empty space in the header (some of which was
later used by POSIX for conflicting purposes); it allowed the header to be continued over multiple records;
and it defined new entries that modify following entries (similar in principle to thex entry described above,
but each GNU special entry is single-purpose, unlike the general-purposex entry). Asa result, GNU tar ar-
chives are not POSIX compatible, although more lenient POSIX-compliant readers can successfully extract
most GNU tar archives.

struct header_gnu_tar {
char name[100];
char mode[8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char checksum[8];
char typeflag[1];
char linkname[100];
char magic[6];
char version[2];
char uname[32];
char gname[32];
char devmajor[8];
char devminor[8];
char atime[12];
char ctime[12];
char offset[12];
char longnames[4];
char unused[1];
struct {

char offset[12];
char numbytes[12];

} sparse[4];
char isextended[1];
char realsize[12];

FreeBSD 11.0 December 23, 2011 6



TAR (5) FreeBSDFile Formats Manual TAR (5)

char pad[17];
};

typeflag GNU tar uses the following special entry types, in addition to those defined by POSIX:

7 GNU tar treats type "7" records identically to type "0" records, except on one obscure
RT OS where they are used to indicate the pre-allocation of a contiguous file on disk.

D This indicates a directory entry. Unlike the POSIX-standard "5" typeflag, the header is
followed by data records listing the names of files in this directory. Each name is pre-
ceded by an ASCII "Y" if the file is stored in this archive or "N" if the file is not stored
in this archive. Each name is terminated with a null, and an extra null marks the end of
the name list. The purpose of this entry is to support incremental backups; a program
restoring from such an archive may wish to delete files on disk that did not exist in the
directory when the archive was made.

Note that the "D" typeflag specifically violates POSIX, which requires that unrecognized
typeflags be restored as normal files. In this case, restoring the "D" entry as a file could
interfere with subsequent creation of the like-named directory.

K The data for this entry is a long linkname for the following regular entry.

L The data for this entry is a long pathname for the following regular entry.

M This is a continuation of the last file on the previous volume. GNUmulti-volume ar-
chives guarantee that each volume begins with a valid entry header. To ensure this, a file
may be split, with part stored at the end of one volume, and part stored at the beginning
of the next volume. The"M" typeflag indicates that this entry continues an existing file.
Such entries can only occur as the first or second entry in an archive (the latter only if
the first entry is a volume label).Thesizefield specifies the size of this entry. Theoffset
field at bytes 369-380 specifies the offset where this file fragment begins. Therealsize
field specifies the total size of the file (which must equalsizeplusoffset). Whenextract-
ing, GNU tar checks that the header file name is the one it is expecting, that the header
offset is in the correct sequence, and that the sum of offset and size is equal to realsize.

N Type "N" records are no longer generated by GNU tar. They contained a list of files to
be renamed or symlinked after extraction; this was originally used to support long
names. Thecontents of this record are a text description of the operations to be done, in
the form “Rename %s to %s\n” or “Symlink %s to %s\n”; in either case, both filenames
are escaped using K&R C syntax. Due to security concerns, "N" records are now gener-
ally ignored when reading archives.

S This is a “sparse” regular file. Sparse files are stored as a series of fragments.The
header contains a list of fragment offset/length pairs. If more than four such entries are
required, the header is extended as necessary with “extra” header extensions (an older
format that is no longer used), or “sparse” extensions.

V The namefield should be interpreted as a tape/volume header name.This entry should
generally be ignored on extraction.

magic The magic field holds the five characters “ustar” followed by a space. Note that POSIX ustar ar-
chives hav ea trailing null.

version The version field holds a space character followed by a null. Note that POSIX ustar archives use
two copies of the ASCII digit “0”.

FreeBSD 11.0 December 23, 2011 7



TAR (5) FreeBSDFile Formats Manual TAR (5)

atime, ctime
The time the file was last accessed and the time of last change of file information, stored in octal as
with mtime.

longnames
This field is apparently no longer used.

Sparseoffset / numbytes
Each such structure specifies a single fragment of a sparse file.The two fields store values as octal
numbers. Thefragments are each padded to a multiple of 512 bytes in the archive. On extraction,
the list of fragments is collected from the header (including any extension headers), and the data is
then read and written to the file at appropriate offsets.

isextended
If this is set to non-zero, the header will be followed by additional “sparse header” records.Each
such record contains information about as many as 21 additional sparse blocks as shown here:

struct gnu_sparse_header {
struct {

char offset[12];
char numbytes[12];

} sparse[21];
char isextended[1];
char padding[7];

};

realsize A binary representation of the file’s complete size, with a much larger range than the POSIX file
size. Inparticular, with Mtype files, the current entry is only a portion of the file. In that case, the
POSIX size field will indicate the size of this entry; therealsizefield will indicate the total size of
the file.

GNU tar pax archives
GNU tar 1.14 (XXX check this XXX) and later will write pax interchange format archives when you specify
the −-posix flag. Thisformat follows the pax interchange format closely, using someSCHILY tags and
introducing new keywords to store sparse file information.There have been three iterations of the sparse file
support, referred to as “0.0”, “0.1”, and “1.0”.

GNU.sparse.numblocks , GNU.sparse.offset , GNU.sparse.numbytes ,
GNU.sparse.size
The “0.0” format used an initialGNU.sparse.numblocks attribute to indicate the number of
blocks in the file, a pair ofGNU.sparse.offset andGNU.sparse.numbytes to indicate
the offset and size of each block, and a singleGNU.sparse.size to indicate the full size of the
file. This is not the same as the size in the tar header because the latter value does not include the
size of any holes. Thisformat required that the order of attributes be preserved and relied on read-
ers accepting multiple appearances of the same attribute names, which is not officially permitted
by the standards.

GNU.sparse.map
The “0.1” format used a single attribute that stored a comma-separated list of decimal numbers.
Each pair of numbers indicated the offset and size, respectively, of a block of data. This does not
work well if the archive is extracted by an archiver that does not recognize this extension, since
many pax implementations simply discard unrecognized attributes.

GNU.sparse.major , GNU.sparse.minor , GNU.sparse.name , GNU.sparse.realsize
The “1.0” format stores the sparse block map in one or more 512-byte blocks prepended to the file
data in the entry body. The pax attributes indicate the existence of this map (via the

FreeBSD 11.0 December 23, 2011 8



TAR (5) FreeBSDFile Formats Manual TAR (5)

GNU.sparse.major and GNU.sparse.minor fields) and the full size of the file.The
GNU.sparse.name holds the true name of the file.To avoid confusion, the name stored in the
regular tar header is a modified name so that extraction errors will be apparent to users.

Solaris Tar
XXX More Details Needed XXX

Solaris tar (beginning with SunOS XXX 5.7 ?? XXX) supports an “extended” format that is fundamentally
similar to pax interchange format, with the following differences:
• Extended attributes are stored in an entry whose type isX, not x , as used by pax interchange for-

mat. Thedetailed format of this entry appears to be the same as detailed above for thex entry.
• An additionalA header is used to store an ACL for the following regular entry. The body of this

entry contains a seven-digit octal number followed by a zero byte, followed by the textual ACL
description. Theoctal value is the number of ACL entries plus a constant that indicates the ACL
type: 01000000 for POSIX.1e ACLs and 03000000 for NFSv4 ACLs.

AIX T ar
XXX More details needed XXX

AIX Tar uses a ustar-formatted header with the typeA for storing coded ACL information.Unlike the
Solaris format, AIX tar writes this header after the regular file body to which it applies. The pathname in this
header is eitherNFS4 or AIXC to indicate the type of ACL stored. The actual ACL is stored in platform-
specific binary format.

Mac OS X Tar
The tar distributed with Apple’s Mac OS X stores most regular files as two separate files in the tar archive.
The two files have the same name except that the first one has “._” prepended to the last path element.This
special file stores an AppleDouble-encoded binary blob with additional metadata about the second file,
including ACL, extended attributes, and resources.To recreate the original file on disk, each separate file can
be extracted and the Mac OS Xcopyfile () function can be used to unpack the separate metadata file and
apply it to th regular file.Conversely, the same function provides a “pack” option to encode the extended
metadata from a file into a separate file whose contents can then be put into a tar archive.

Note that the Apple extended attributes interact badly with long filenames. Since each file is stored with the
full name, a separate set of extensions needs to be included in the archive for each one, doubling the over-
head required for files with long names.

Summary of tar type codes
The following list is a condensed summary of the type codes used in tar header records generated by differ-
ent tar implementations. More details about specific implementations can be found above:
NUL

Early tar programs stored a zero byte for regular files.
0 POSIX standard type code for a regular file.
1 POSIX standard type code for a hard link description.
2 POSIX standard type code for a symbolic link description.
3 POSIX standard type code for a character device node.
4 POSIX standard type code for a block device node.
5 POSIX standard type code for a directory.
6 POSIX standard type code for a FIFO.
7 POSIX reserved.
7 GNU tar used for pre-allocated files on some systems.

FreeBSD 11.0 December 23, 2011 9



TAR (5) FreeBSDFile Formats Manual TAR (5)

A Solaris tar ACL description stored prior to a regular file header.
A AIX tar ACL description stored after the file body.
D GNU tar directory dump.
K GNU tar long linkname for the following header.
L GNU tar long pathname for the following header.
M GNU tar multivolume marker, indicating the file is a continuation of a file from the previous volume.
N GNU tar long filename support. Deprecated.
S GNU tar sparse regular file.
V GNU tar tape/volume header name.
X Solaris tar general-purpose extension header.
g POSIX pax interchange format global extensions.
x POSIX pax interchange format per-file extensions.

SEE ALSO
ar(1),pax(1),tar(1)

STANDARDS
The tar utility is no longer a part of POSIX or the Single Unix Standard. It last appeared in Version 2 of
the SingleUNIX Specification (“SUSv2”). It has been supplanted in subsequent standards bypax(1). The
ustar format is currently part of the specification for thepax(1) utility. The pax interchange file format is
new with IEEE Std 1003.1-2001 (“POSIX.1”).

HISTORY
A tar command appeared in Seventh Edition Unix, which was released in January, 1979. Itreplaced thetp
program from Fourth Edition Unix which in turn replaced thetap program from First Edition Unix.John
Gilmore’spdtar public-domain implementation (circa 1987) was highly influential and formed the basis of
GNU tar (circa 1988).Joerg Shilling’s star archiver is another open-source (CDDL) archiver (originally
developed circa 1985) which features complete support for pax interchange format.

This documentation was written as part of thelibarchive and bsdtar project by Tim Kientzle
<kientzle@FreeBSD.org>.

FreeBSD 11.0 December 23, 2011 10


