LIBARCHIVE (3) BSD Library Functions Manual LIBRCHIVE (3)

NAME
I i barchi ve_i nt er nal s — description of libarchie internal interfaces

OVERVIEW
Thel i bar chi ve library provides a fbeible interface for reading and writing streaming arehiles such
as tar and cpiolnternally, it follows a modular layered design that should enileasy to add ne archive
and compression formats.

GENERAL ARCHITECTURE
Externally libarchve eyposes most operations through an opaque, object-style acgerf The
ar chi ve_ent ry(1) objects store information about a single filesystem objEu rest of the library pro-
vides facilities to writear chi ve_ent r y(1) objects to archie files, read them from archa files, and write
them to disk. (There are plans to add a facility to exachi ve_ent r y(1) objects from disk as well.)

The read and write APIs eachviaafour layers: a public API layea format layer that understands the ar
chive file format, a compression layend an 1/O layer The I/O layer is completelyxposed to clients who
can replace it entirely with their own functions.

In order to preide as much consistenas ssible for clients, some public functions are virtualizEgden-
tually, it should be possible for clients to open an areha disk writer, and then use a single set of code to
select and write entries,gadless of the target.

READ ARCHITECTURE
From the outside, clients use thiechi ve_r ead(3) API to manipulate aar chi ve object to read entries
and bodies from an arctd dream. Internallythe ar chi ve object is cast to aar chi ve_r ead object,
which holds all read-specific data. The API has four layers: Weskolayer is the I/O layerThis layer can
be oerridden by clients, but most clients use the packaged 1/0O callbacki&dguip for example, by
archi ve_read_open_nenory(3), andar chi ve_read_open_f d(3). Thecompression layer calls
the 1/O layer to read bytes and decompresses them for the format Tageformat layer unpacks a stream
of uncompressed bytes and creaeshi ve_ent ry objects from the incoming data. The API layer tracks
overall state (for example, it prents clients from reading data before reading a header) aokkinthe for
mat and compression layer operations through registered function poiltepsrticular the API layer
drives the format-detection process: When opening the agchireads an initial block of data anda® it
to each registered compression handlére one with the highest bid is initialized with the first blo&kmi-
larly, the format handlers are polled to see which handler is the best for eagk. afehior to 2.4.0, the for
mat bidders were Vioked for each entrybut this design hindered error reeny.)

I/O Layer and Client Callbacks
The read API goes to some lengths to be nice to clients. As a result, theng @stifietions on the betia
ior of the client callbacks.

The client read callback is expected tovyile a block of data on each cal zero-length return does indi-
cate end of file, it otherwise blocks may be as small as one byte or as large as the entire file. In particular
blocks may be of different sizes.

The client skip callback returns the number of bytes actually skipped, which may be much smaller than the
skip requested. The only requirement is that the skip not gerldn particular clients are allowed to return

zero for ay skip that the don’'t want to handle. The skip callback musverebe invoked with a negaive

value.

Keep in mind that not all clients are reading from disk: clients reading fromorietwnay provide diérent-
sized blocks onwery request and cannot skip at all; advanced clients magrese(2) to read the entire file
into memory at once and return the entire file to libaela a sngle block; other clients may begin asyn-
chronous 1/O operations for the next block on each request.

BSD April 16, 2007 1

LIBARCHIVE (3) BSD Library Functions Manual LIBRCHIVE (3)

Decompresssion Layer
The decompression layer not only handles decompression, itdiecsldata so that the format handlers see
a much nicer 1/0 model.The decompression API is adwtage peek/consume model.read_ahead request
specifies a minimum read amount; the decompression layer must provide a pointer to at least that much data.
If more data is immediatelyailable, it should return more: the format layer handles bulk data reads by ask-
ing for a minimum of one byte and then copying as much data eailebée.

A subsequent call to theonsune() function adances the read pointeNote that data returned from a
read_ahead() call is guaranteed to remain in place until the next catleéad ahead(). Intenening
calls toconsune() should not cause the data toveo

Skip requests mustwaslys be handledxactly. Decompression handlers that cannot seekdamtvehould not
register a skip handler; the API layer fills in a generic skip handler that reads and discards data.

A decompression handler has a specific lifecycle:

Registration/Configuration
When the client inokes the public support function, the decompression handiekés the inter
nal__archive_read register_conpressi on() function to provide bid and initialization
functions. This function returns NULL on error or else a pointer to &truct
deconpressor _t. This structure containsaid [configslot that can be used for storingyan
customization information.

Bid The bid function is imoked with a pointer and size of a block of datdhe decompressor can
access its config data through ttecompressoelement of thear chi ve_r ead object. Thebid
function is otherwise stateless. In particuiamust not perform anl/O operations.

The \alue returned by the bid function indicates its suitability for handling this data stfeaid.
of zero will ensure that this decompressor igenénvoked. Returnzero if magic number checks
fail. Otherwise,your initial implementation should return the number of bits actually eukck
For example, if you verify tw full bytes and three bits of another byte, bid Nate that the initial
block may be very short; be careful to only inspect the data you\am® diThecurrent decom-
pressors require wbytes for correct bidding.)

Initialize The winning bidder will hee its init function called.This function should initialize the remaining
slots of thestruct decommssor_tobject pointed to by thelecompressorelement of the
archive_readobject. Inparticular it should allocate anworking data it needs in traataslot of
that structure.The init function is called with the block of data that was used for tasting. At this
point, the decompressor is responsible for all I/O requests to the client callddekdecompres-
sor is free to read more data as and when necessary.

Satisfy 1/0 requests
The format handler will woke theread_aheagdconsumeand skipfunctions as needed.

Finish The finish method is called only once when the &eclsi dosed. Itshould release gthing stored
in the dataandconfigslots of thedecompressoobject. Itshould not imoke the client close call-
back.

Format Layer

The read formats ke a émilar lifecycle to the decompression handlers:

Registration
Allocate your pivate data and initialize your pointers.

Bid Formats bid by imoking the read_ahead() decompression method but not calling the
consune() method. This allows each bidder to look ahead in the input str&ghders should
not look further ahead than necessas/bng look aheads put pressure on the decompression layer
to buffer lots of data. Most formats only require & faundred bytes of look ahead; look aheads of
a few kilobytes are reasonablgThe 1ISO9660 reader sometimes looks ahead by 48k, which
should be considered an upper limit.)

BSD April 16, 2007 2

LIBARCHIVE (3) BSD Library Functions Manual LIBRCHIVE (3)

Read header
The header read is usually the most complat of ary format. Thereare a fev strategies worth
mentioning: Br formats such as tar or cpio, reading and parsing the header is straightforward since
headers alternate with datkor formats that store all header data at the beginning of the file, the
first header read request maywdad read all headers into memory and store that data, sorted by
the location of the file dataSubsequent header read requests will skip forward to the beginning of
the file data and return the corresponding header.

Read Data
The read data interface supports sparse files; this requires that each call return a block of data spec-
ifying the file offset and sizeThis may require you to carefully track the location so that you can
return accurate file offsets for each read. Remember that the decompressor will return as much
data as it hasGenerally you will want to request one bytexamine the return value to seewho
much data is\ailable, and possibly trim that to the amount you can el should invoke @n-
sume for each block just before you return it.

Skip All Data
The skip data call should skiwes al file data and trailing paddingThis is called automatically
by the API layer just before each header reads also called in response to the client calling the
publicdat a_ski p() function.

Cleanup On cleanup, the format should release all of its allocated memory.

API Layer
XXX to do XXX

WRITE ARCHITECTURE
The write API has a similar set of four layers: an API lagdormat layera compression layeind an 1/O
layer The raistration here is much simpler because only one format and one compression castdrede
at a time.

I/O Layer and Client Callbacks
XXX To be written XXX

Compression Layer
XXX To be written XXX

Format Layer
XXX To be witten XXX

API Layer
XXX To be witten XXX

WRITE_DISK ARCHITECTURE
The write_disk API is intended to look justdithe write API to clients.Since it does not handle multiple
formats or compression, it is not layered internally.

GENERAL SERVICES
The archive_read, archive write, and archive_wite_di sk objects all contain an initial
ar chi ve object which provides common support for a set of standard services. (Recall that ANSI/ISO C90
guarantees that you can cast freely between a pointer to a structure and a pointer to the first element of that
structure.) Ther chi ve object has a magicalue that indicates which API this object is associated with,
slots for storing error information, and function pointers for virtualized API functions.

BSD April 16, 2007 3

LIBARCHIVE (3) BSD Library Functions Manual LIBRCHIVE (3)

MISCELLANEOUS NOTES
Connecting existing arcbing libraries into libarchie is generally quite dffcult. In particular mary exist-
ing libraries strongly assume that you are reading from a filg;sdek forwards and baclards as necessary
to locate various pieces of information. In contrast, libarchieve seeks backwards in its input, which
sometimes requires very different approaches.

For example, libarchie’s 1ISO9660 support operates veryfeiéntly from most 1ISO9660 reader3he
libarchive support utilizes a work-queue design that keeps a list of known entries sorted by their location in
the input. Wheneer libarchive's ISO9660 implementation is asked for the next heathecks this list to

find the next item on the disk. Directories are parsed whegnateeencountered and weétems are added to

the list. This design relies heavily on the ISO9660 image being optimized so that directeaiesalcur
earlier on the disk than the files yhdescribe.

Depending on the specific format, such approaches may not be possible. The ZIP format specification, for
example, allows archiers to store &y information only at the end of the file. In theakyis possible to cre-

ate ZIP archies that cannot be read without seekirigprtunately such archies ae very rare, and libarcke

can read most ZIP arcis, though it cannot whys extract as much information as a dedicated ZIP pro-
gram.

SEE ALSO
archi ve(3),archi ve_entry(3),archive_read(3),archi ve_write(3),
archive_wite_disk(3)

HISTORY
Thel i bar chi ve library first appeared iRreeBSD5.3.

AUTHORS
Thel i bar chi ve library was written by Tim Kientzl&ientzle@acm.org

BSD April 16, 2007 4

