
NAME
archive_read — functions for reading streaming archives

SYNOPSIS
#include <archive.h>

DESCRIPTION
These functions provide a complete API for reading streaming archives. Thegeneral process is to first create
thestruct archive object, set options, initialize the reader, iterate over the archive headers and associated data,
then close the archive and release all resources.

Create archive object
Seearchive_read_new(3).

To read an archive, you must first obtain an initializedstruct archive object fromarchive_read_new().

Enable filters and formats
Seearchive_read_filter(3) andarchive_read_format(3).

You can then modify this object for the desired operations with the variousarchive_read_set_XXX()
and archive_read_support_XXX() functions. In particular, you will need to invoke appropriate
archive_read_support_XXX() functions to enable the corresponding compression and format support.
Note that these latter functions perform two distinct operations: they cause the corresponding support code to
be linked into your program, and they enable the corresponding auto-detect code. Unless you have specific
constraints, you will generally want to invoke archive_read_support_filter_all() and
archive_read_support_format_all() to enable auto-detect for all formats and compression types
currently supported by the library.

Set options
Seearchive_read_set_options(3).

Open archive
Seearchive_read_open(3).

Once you have prepared thestruct archive object, you callarchive_read_open() to actually open the ar-
chive and prepare it for reading. There are several variants of this function; the most basic expects you to
provide pointers to several functions that can provide blocks of bytes from the archive. There are con-
venience forms that allow you to specify a filename, file descriptor, FILE ∗ object, or a block of memory
from which to read the archive data. Notethat the core library makes no assumptions about the size of the
blocks read; callback functions are free to read whatever block size is most appropriate for the medium.

Consume archive
Seearchive_read_header(3),archive_read_data(3) andarchive_read_extract(3).

Each archive entry consists of a header followed by a certain amount of data.You can obtain the next header
with archive_read_next_header(), which returns a pointer to anstruct archive_entry structure with
information about the current archive element. Ifthe entry is a regular file, then the header will be followed
by the file data.You can usearchive_read_data() (which works much like theread(2) system call)
to read this data from the archive, or archive_read_data_block() which provides a slightly more effi-
cient interface. You may prefer to use the higher-level archive_read_data_skip(), which reads and
discards the data for this entry, archive_read_data_to_file(), which copies the data to the provided
file descriptor, or archive_read_extract(), which recreates the specified entry on disk and copies data
from the archive. In particular, note thatarchive_read_extract() uses thestruct archive_entrystructure
that you provide it, which may differ from the entry just read from the archive. In particular, many applica-
tions will want to override the pathname, file permissions, or ownership.

BSD March23, 2011 1



archive_read (3) BSD Library Functions Manual archive_read (3)

Release resources
Seearchive_read_free(3).

Once you have finished reading data from the archive, you should callarchive_read_close() to close
the archive, then callarchive_read_free() to release all resources, including all memory allocated by
the library.

EXAMPLE
The following illustrates basic usage of the library. In this example, the callback functions are simply wrap-
pers around the standardopen(2),read(2), andclose(2) system calls.

void
list_archive(const char ∗ name)
{
struct mydata ∗ mydata;
struct archive ∗ a;
struct archive_entry ∗ entry;

mydata = malloc(sizeof(struct mydata));
a = archive_read_new();
mydata->name = name;
archive_read_support_filter_all(a);
archive_read_support_format_all(a);
archive_read_open(a, mydata, myopen, myread, myclose);
while (archive_read_next_header(a, &entry) == ARCHIVE_OK) {
printf("%s\n",archive_entry_pathname(entry));
archive_read_data_skip(a);

}
archive_read_free(a);
free(mydata);

}

ssize_t
myread(struct archive ∗ a, void ∗ client_data, const void ∗∗ buff)
{
struct mydata ∗ mydata = client_data;

∗ buff = mydata->buff;
return (read(mydata->fd, mydata->buff, 10240));

}

int
myopen(struct archive ∗ a, void ∗ client_data)
{
struct mydata ∗ mydata = client_data;

mydata->fd = open(mydata->name, O_RDONLY);
return (mydata->fd >= 0 ? ARCHIVE_OK : ARCHIVE_FATAL);

}

int
myclose(struct archive ∗ a, void ∗ client_data)
{

BSD March23, 2011 2



archive_read (3) BSD Library Functions Manual archive_read (3)

struct mydata ∗ mydata = client_data;

if (mydata->fd > 0)
close(mydata->fd);

return (ARCHIVE_OK);
}

SEE ALSO
tar(1),libarchive(3),archive_read_new(3),archive_read_data(3),
archive_read_extract(3),archive_read_filter(3),archive_read_format(3),
archive_read_header(3),archive_read_open(3),archive_read_set_options(3),
archive_util(3),tar(5)

HISTORY
Thelibarchive library first appeared inFreeBSD5.3.

AUTHORS
Thelibarchive library was written by Tim Kientzle〈kientzle@acm.org〉.

BUGS
Many traditional archiver programs treat empty files as valid empty archives. For example, many implemen-
tations oftar(1) allow you to append entries to an empty file.Of course, it is impossible to determine the
format of an empty file by inspecting the contents, so this library treats empty files as having a special
“empty” format.

BSD March23, 2011 3


